

Li Si-fan and Chen Yi-yuan

Department of Radio Engineering
The Institute of Nanjing Technology
Nanjing, China

ABSTRACT

The parameters of equivalent circuit of an inductive strip inserted in ridged waveguides are analyzed. A CAD of bandpass filters is developed. The experimental results are in good agreement with theoretical calculation.

Introduction

The design of waveguide bandpass filters with inductive strips inserted in rectangular and ridged waveguide was first developed by Konishi ¹ ². However, computer-aided design of rectangular waveguide and ridged waveguide bandpass filters have not been revealed to date. The main features of the present work are: (1) the solution of boundary problems including the evaluation of eigenvalues of ridged waveguides and the equivalent parameters of inductive strips in ridged waveguides. We obtained a set of curves representing series and parallel reactances in equivalent T networks which has not been published; (2) the development of a computer program containing main program and subroutines on the bases of microwave network synthesis theory and field theory.

Theory

A strip inserted in rectangular and ridged waveguide shown in Fig.1(a) and 1(b) respectively is equivalent to a T network shown in Fig.1(c). The parameters X_s and X_p are related to input admittance $y^{(1)}$ and $y^{(2)}$ on plane T_1 ³.

$$jX_s = 1/y^{(1)} ; jX_p = \frac{1}{2}(1/y^{(2)} - 1/y^{(1)}) \quad (1)$$

where $y^{(1)}$ is the input admittance when plane T_0 is an electric wall and $y^{(2)}$ is that when T_0 is magnetic wall. Since the principles of deriving the variation expression for $y^{(i)}$ ($i=1,2$) have been reported in ¹, only the final result will be given. The general expression of $y^{(i)}$ is as follows ¹:

$$\frac{\sum_{n=3,5,\dots}^{\infty} Y_{on} \langle \bar{E}^{(i)} \cdot \bar{e}_n^{(1)} \rangle^2 + \sum_{m=1}^{\infty} Y_m Q_m^{(i)} \langle \bar{E}^{(i)} \cdot \bar{e}_m^{(2)} \rangle^2}{Y_{01} \langle \bar{E}^{(i)} \cdot \bar{e}_1^{(1)} \rangle^2} \quad (2)$$

where Y_{on} = wave admittance for TE_{no} mode in region I

$\bar{e}_n^{(1)}$ = vector mode function of nth order mode in region I

Y_m = wave admittance for TE_{mo} mode in region II

$\bar{e}_m^{(2)}$ = vector mode function of mth order mode in region II

$Q_m^{(1)} = \coth(T_m \pi/2)$

$Q_m^{(2)} = 1/Q_m^{(1)}$

T_m = propagation constant of TE_{mo} mode in region II

$\bar{E}^{(i)}$ = electric field on the interface T_1

Various methods for the evaluation of eigenvalues in ridged waveguides which is contained in Y_{on} and e_n have been presented by Hopfer ⁴, Pyle ⁵ and Montgomery ⁶. The present paper describes an application of Galerkin's method, developed by Montgomery, to thin ridge waveguide case. For the sake of simplicity we make two assumptions: (1) the effect of x components of transverse electric fields in region I is negligible, (2) the mode function of $\bar{e}_n^{(1)}$ is represented by 1st term of an infinite series. The transcendental equation of the eigenvalue of nth mode in ridged waveguide k_{rn} was solved by the recursion formula presented by Barlow ⁷.

Since the ridge used in filters is very thin, an alternative method is used for accuracy check. In Fig.2(a) the single-ridged waveguide (zero thickness) has an eigenvalue

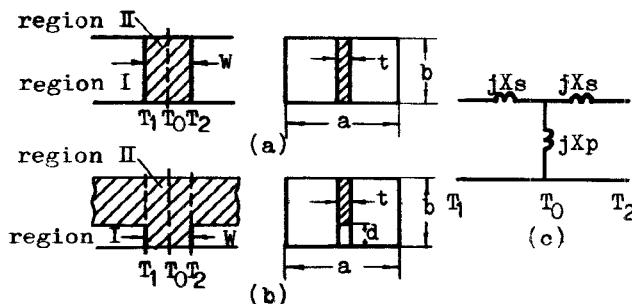


Fig.1 Strip inserted in (a) rectangular waveguide, (b) ridged waveguide and (c) their equivalent T network.

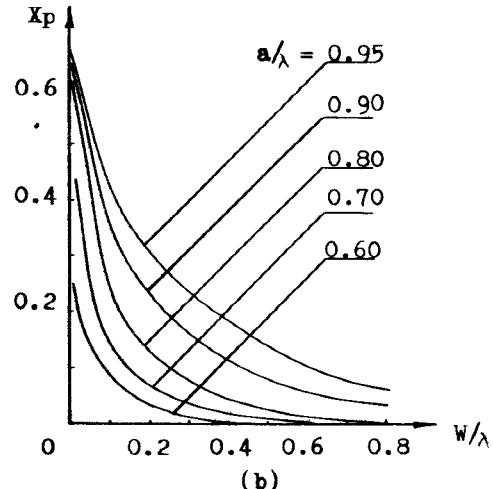
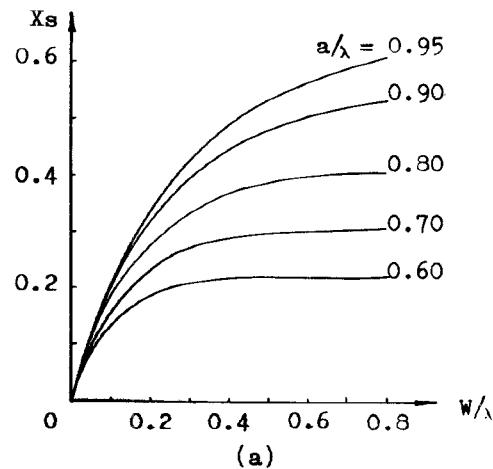



Fig.3 The parameters of equivalent T network of a strip inserted in a ridged waveguide.
(a) X_s and (b) X_p .

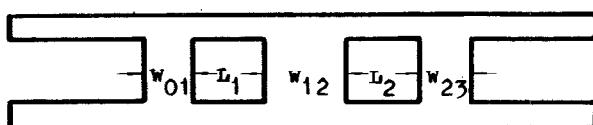


Fig.6 Strips in rectangular waveguide.

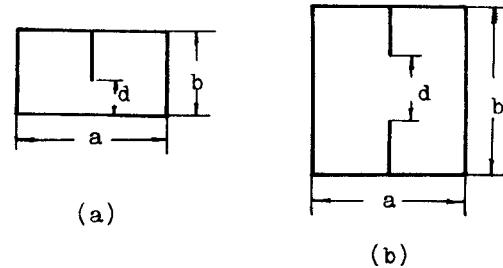


Fig.2 (a) Single-ridged waveguide and (b) double-ridged waveguide

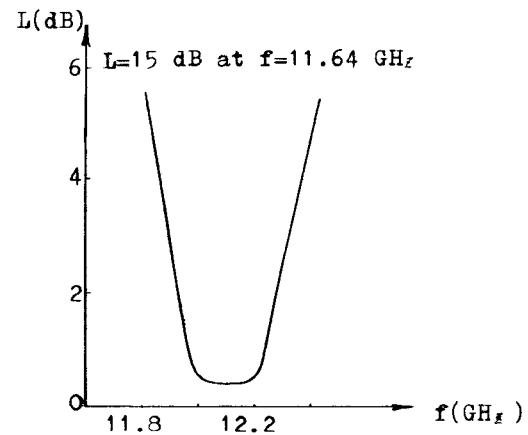


Fig.4 Measured frequency characteristics of a rectangular waveguide bandpass filter.

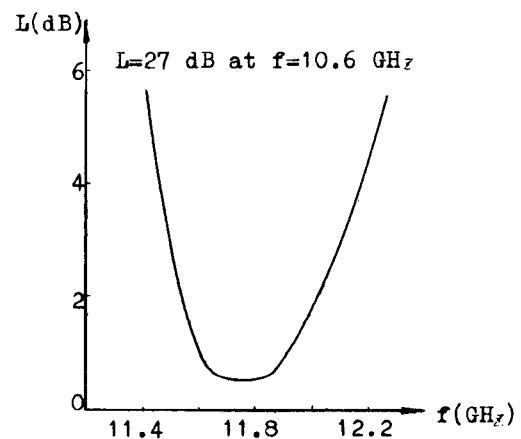


Fig.5 Measured frequency characteristics of a ridged waveguide bandpass filter.

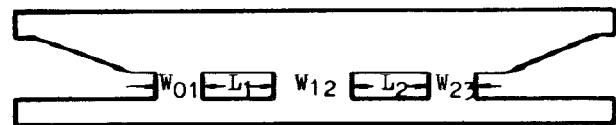


Fig.7 Strips in ridged waveguide.

approximately equal to that of a double-ridged waveguide shown in Fig.2(b). The latter is only a special case of a fin line, whose eigenvalue can be evaluated by spectral domain technique(SDT) as presented by Knorr⁸. The results shown in table I given by two methods are in good agreement.

A computer subroutine was developed to calculate the eigenvalues of ridged waveguide and the equivalent parameters X_s and X_p of a strip. A set of X_s and X_p curves for ridged waveguides with $b/d=2$, $a/\lambda=0.6 \sim 0.95$ and $t/\lambda=0.02$ were shown in Fig.3. The subroutine for filter synthesis developed in 9 is reused to complete the computer program.

Table I
($a=22.86$ mm)

	b mm	d mm	k_r^1/m
Single-ridged (by Galerkin)	10.16	5.08	111
Double-ridged (by SDT)	20.32	10.16	110

Features of the Computer Program

The program is user-oriented. The input data are specifications of filters to be designed, such as frequency band, passband ripple, stopband insertion loss. The main program in corporation with the subroutine will give out all the necessary dimensions of structure. The input frequency has to be increased by 2% in rectangular waveguide case in order to compensate the end effect of the strip.

Fig. 4 and Fig. 5 are the measured frequency characteristics of a rectangular waveguide bandpass filter and a ridged waveguide bandpass filter respectively. Their original specifications are as follows:

Specifications

	Rectangular	Single-ridged
Frequency Band	12-12.2 GH	11.7-11.9 GH
Passband Ripple	0.01 dB	0.01 dB
Stopband Attenuation	15 dB	20 dB
Stopband Frequency	11.6 GH	9.3 GH
Waveguide Dimension	$a \times b = 22.86 \times 10.16$ mm	$a \times b = 22.86 \times 5.08$ mm
Thickness of Strip	$t = 0.5$ mm	$t = 0.5$ mm

The computed dimensions referring to Fig. 6 and Fig. 7 are as follows:

Fig. 6 $W_{01}=W_{23}=5.20$ mm $W_{12}=15.6$ mm
 $L_1=L_2=8.59$ mm

Fig. 7 $W_{01}=W_{23}=2.63$ mm $W_{12}=10.98$ mm

$L_1=L_2=9.79$ mm

It is obvious that the measured characteristics are in good agreement with original specifications.

Conclusions

We presented the CAD of waveguide bandpass filters. It is based on the boundary problem solutions and the theory of microwave network synthesis, the program is checked by various experiments. The curves of equivalent parameters of the strips are believed useful in practice.

References

- 1 Y.Konishi, et al, "The Design of Bandpass Filters with Inductive Strip Planar Circuit Mounted in Waveguide" IEEE Trans. MTT Vol. MTT-22, Oct. 1974, pp.869-873
- 2 Y.Konishi, "Planar Circuit Mounted in Waveguide Used as a Downconverter" IEEE Trans. MTT Vol. MTT-26, Oct. 1973, pp.716-719
- 3 J.Schwingen et al, "Discontinuities in Waveguides", 1968, p.28
- 4 S.Hopfer, "The Design of Ridged Waveguides" IRE Trans. MTT Vol. MTT-3 Oct. 1955 pp.20-21
- 5 J.R.Pyle, "The cutoff Wavelength of the TE₁₀ Mode in Ridged Waveguides of Any Aspect Ratio" IEEE Trans. MTT Vol. MTT-14, Apr. 1966, pp.175-183
- 6 J.P.Montgomery, "On the Complete Eigenvalue Solution of Ridged Waveguide" IEEE Trans. MTT Vol. MTT-19, June 1971, pp.547-555
- 7 C.A.Barlow et al, "A Method for the Solution of Roots of a Nonlinear Equation and for Solution of the General Eigenvalue Problems" J.Ass.Comput.Mach. Jan. 1966, pp.135-142
- 8 J.B.Knorr, P.M.Shayda, "Millimeter Wave Fin-line Characteristics" IEEE Trans. MTT Vol. MTT-28, July 1980 pp.737-743
- 9 Li Si-fan, Chen Yi-yuan "CAD of Rectangular Waveguide Bandpass Filters with Planar Circuits" Scientia Sinica, Submitted for publication